
3.6 Factorising Arithmetic Functions.

Question If Dirichlet convolution “combines” arithmetic functions can we
factor a given function into a convolution of “simpler” functions?

The same method as was used to show that ζ(s) has a Dirichlet Product
can be used to prove the following.

Theorem 3.28 If f is multiplicative and Df (s) is absolutely convergent at

s0 ∈ C then, for all s : Re s > Re s0, the Euler Product

∏

p

(

1 +
f(p)

ps
+

f(p2)

p2s
+

f(p3)

p3s
+ ...

)

converges to Df (s).

Proof Left to student, but see appendix if stuck. �

If f is multiplicative then Theorem 3.28 gives

Df (s) =
∏

p

(

∑

ℓ≥0

f
(

pℓ
)

pℓs

)

, (10)

for Re s > Re s0, since f(p0) = f(1) = 1. If, further, f is completely

multiplicative then

Df (s) =
∏

p

(

1−
f(p)

ps

)−1

for Re s > Re s0 and as long as |f(p) /ps| < 1 for all primes p.

The idea of this method of factorisation is to write the Dirichlet Series as
an Euler product and factor each term in the product.

In all our examples f
(

pℓ
)

will not depend on p, only ℓ, so we can write
aℓ = f

(

pℓ
)

for ℓ ≥ 0. Write y = 1/ps and the series within (10) becomes

∑

ℓ≥0

aℓy
ℓ. (11)

The aim of this method is to write this series as product and quotient of
terms of the form 1− ym for various integers m ≥ 1. For if we have a factor
of the form (1− ym)−1, replacing y by 1/ps we find a factor of the right hand
side of (10) of

∏

p

(

1−
1

pms

)−1

= ζ(ms) .
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Further, if the sum of (11) contains a factor of 1 − yk for some k ≥ 1, then
on replacing y by 1/ps we find a factor of the right hand side of (10) of

∏

p

(

1−
1

pks

)

=
1

ζ(ks)
.

As a way of illustrating this method:

Recall that Qk is the characteristic function of the k-free integers.

Example 3.29 Show that

∞
∑

n=1

Qk(n)

ns
=

ζ(s)

ζ(ks)

for Re s > 1.

Solution The function Qk is multiplicative so, without yet considering the
regions of convergence for the Dirichlet Series, we have the Euler Product

∞
∑

n=1

Qk(n)

ns
=

∏

p

(

1 +
Qk(p)

ps
+

Qk(p
2)

p2s
+

Qk(p
3)

p3s
+ · · ·

)

=
∏

p

(

1 +
1

ps
+

1

p2s
+ · · ·+

1

p(k−1)s

)

,

since Qk

(

pℓ
)

= 0 for all ℓ ≥ k, and = 1 elsewhere. Write y = 1/ps when each
bracket is a finite geometric sum of the form

1 + y + y2 + · · ·+ yk−1 =
1− yk

1− y
.

Therefore

∞
∑

n=1

Qk(n)

ns
=

∏

p

(

1− 1/pks

1− 1/ps

)

=
∏

p

(

1−
1

ps

)−1
(

∏

p

(

1−
1

pks

)−1
)−1

=
ζ(s)

ζ(ks)
, (12)
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having used (7).

We can now consider convergence. Since the ζ-functions on the right
hand side are absolutely convergent in Re s > 1, the final result is valid in
this half plane. �

Note that

1

ζ(ks)
=

∞
∑

m=1

µ(m)

mks
=

∞
∑

m=1

µ(m)

(mk)s
=

∞
∑

n=1
n=mk

µ(m)

ns
=

∞
∑

n=1

µk(n)

ns

where µk is given by

Definition 3.30

µk(n) =

{

µ(m) if n = mk,

0 otherwise.

The Möbius Function is µ1.

Example 3.29 shows that

DQk
(s) = ζ(s)

1

ζ(ks)
= D1(s)Dµk

(s) = D1∗µk
(s) ,

for Re s > 1. This ‘suggests’

Example 3.31 For all k ≥ 2, Qk = 1 ∗ µk.

Solution Since Qk, 1 and µk are all multiplicative it suffices to prove equality
on prime powers. Consider

1 ∗ µk (p
a) =

∑

0≤r≤a

µk (p
r) . (13)

The terms µk (p
r) can only be non-zero if k|r. And if k|r, so r = kℓ for

some ℓ, we have µk (p
r) = µ

(

pℓ
)

which is only non-zero when ℓ = 0 or 1.
Thus µk (p

r) is only non-zero when r = 0 or k. Therefore, if a < k then the
sum in (13) contains only one non-zero term, µk (p

0) = 1. If a ≥ k then the
sum contains two non-zero terms

µk

(

p0
)

+ µk

(

pk
)

= 1 + µ (p) = 1− 1 = 0.

Hence

1 ∗ µk (p
a) =

{

1 if a < k
0 if a ≥ k

}

= Qk (p
a) .
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Note that when k = 1 we have seen that Q1 = δ, while µ1 = µ and so
Qk = 1 ∗ µk reduces down to the Möbius inversion δ = 1 ∗ µ.

The most important case of this example is k = 2 : Q2 = 1 ∗ µ2, which
will be seen many times.

Example 3.32 Show, by looking at Euler Product of the Dirichlet Series on

the left, that
∞
∑

n=1

2ω(n)

ns
=

ζ2(s)

ζ(2s)

for Re s > 1.

Solution The left hand side has the Euler product

∏

p

(

1 +
2

ps
+

2

p2s
+

2

p3s
+

2

p4s
+

)

.

For |y| < 1,

1 + 2y + 2y2 + 2y3 + .... = 1 + 2y
(

1 + y + y2 + ....
)

= 1 +
2y

1− y
on summing the geometric series

=
1 + y

1− y

=
1 + y

1− y
×

1 + y

1− y
=

1− y2

(1− y)2
.

Hence
∞
∑

n=1

2ω(n)

ns
=
∏

p

1− 1/p2s

(1− 1/ps)2
=

ζ2(s)

ζ(2s)
.

�

The result on 2ω gives

D2ω(s) = ζ(s) ζ(s)
1

ζ(2s)
= D1(s)D1(s)Dµ2

(s) = D1∗1∗µ2
(s) ,

for Re s > 1. This ‘suggests’
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Example 3.33

2ω = 1 ∗ 1 ∗ µ2.

Solution See Problem Sheet.

This can be combined with the definition d = 1∗1 or the result Q2 = 1∗µ2

to give
2ω = d ∗ µ2 = 1 ∗Q2. (14)

There are many such connections between Arithmetic functions, some of
which are the content of questions on the Problem Sheet and all are collected
on a page on the Course web site.

3.7 The decomposition of d2

For an example in the next Section we need the decomposition of d2.

Example 3.34

Dd2(s) =
ζ4(s)

ζ(2s)
,

for Re s > 1.

Solution We note that d2 is a multiplicative function and d2(pa) = (a+1)2

on prime powers. So the Dirichlet Series of d2 has the Euler Product

Dd2 (s) =
∞
∑

n=1

d2(n)

ns
=
∏

p

(

1 +
4

ps
+

9

p2s
+

16

p3s
+

25

p4s
+ ...

)

,

for Re s > 1. To sum the series

S = 1 + 4y + 9y2 + 16y3 + 25y4 + ...+ (a+1)2 ya + ...,
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for |y| < 1 consider, with not justification,

S =
d

dy

(

y + 2y2 + 3y3 + 4y5 + ...
)

=
d

dy

(

y
(

1 + 2y + 3y2 + 4y3 + ...
))

=
d

dy

(

y
d

dy

(

y + y2 + y3 + y4 + ...
)

)

=
d

dy

(

y
d

dy

y

1− y

)

, on summing the geometric series,

=
d

dy

(

y

(1− y)2

)

=
1 + y

(1− y)3
.

Since we haven’t justified the integrating and differentiating of infinite se-
ries term-by-term you need to check this result by expanding (1 + y) (1− y)−3

and getting the series you started with.

We are not quite finished for the formula for the sum needs to be written
as a product and quotient of terms of the form 1 − ym, i.e. with a negative
sign. So

S =
1 + y

(1− y)3
=

1 + y

(1− y)3
×
1− y

1− y
=

1− y2

(1− y)4
.

Using this in each factor of the Euler Product for Dd2 (s) gives

Dd2(s) =
∏

p

1− 1/p2s

(1− 1/ps)4
=

(

∏

p

(

1−
1

ps

)−1
)4(

∏

p

(

1−
1

p2s

)−1
)−1

=
ζ4(s)

ζ(2s)
,

for Re s > 1. �

From this,

Dd2(s) =
ζ4(s)

ζ(2s)
= ζ4(s)

1

ζ(2s)
= D4

1(s)Dµ2
(s) = D1∗1∗1∗1∗µ2

(s) .
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for Re s > 1. This ‘suggests’ the decomposition d2 = 1 ∗ 1 ∗ 1 ∗ 1 ∗ µ2 or,
because of Example 3.33, d2 = 1 ∗ 1 ∗ 2ω. We prove this in two stages.

Example 3.35 For all n ≥ 1, 1 ∗ 2ω (n) = d (n2).

Solution Since both sides are multiplicative it suffices to check equality on
prime powers.

(1 ∗ 2ω) (pr) =
∑

a+b=r

2ω(p
b) =

∑

0≤b≤r

2ω(p
b) = 2ω(p

0) +
∑

1≤b≤r

2ω(p
b)

= 20 +
∑

1≤b≤r

2 = 1 + 2r

= d
(

p2r
)

.

�

Notation For n ≥ 1 let g (n) = d (n2). This is temporary notation for this
course. Then 1 ∗ 2ω = g.

Example 3.36 1 ∗ g = d2.

Solution Since both sides are multiplicative it suffices to check equality on
prime powers.

(1 ∗ g) (pr) =
∑

0≤b≤r

g
(

pb
)

=
∑

0≤b≤r

(2b+ 1)

= 2
r (r + 1)

2
+ (r + 1)

= (r + 1)2 = d2(pr) .

�

Hence we have shown

Example 3.37

d2 = 1 ∗ 1 ∗ 1 ∗ 1 ∗ µ2.
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Euler’s phi function

Recall the definition of Euler’s phi function as

φ(n) = {1 ≤ r ≤ n, gcd (r, n) = 1} .

We ‘pick out’ the condition gcd (r, n) = 1 using the δ function, for which
δ(n) = 1 if n = 1, zero otherwise. For then

δ(gcd (r, n)) =

{

1 if gcd (r, n) = 1,

0 otherwise.

We can then use Möbius inversion, in the form δ(m) =
∑

d|m µ(d) to get

Example 3.38 Show that Euler’s phi function satisfies φ = µ ∗ j, i.e.

φ(n) =
∑

d|n

µ(d)
n

d
.

Solution

φ(n) =
n
∑

r=1
gcd(r,n)=1

1 =
n
∑

r=1

δ (gcd (r, n)) by definition of δ,

=
n
∑

r=1

∑

d| gcd(r,n)

µ (d) by Möbius inversion δ = 1 ∗ µ.

Yet d| gcd (r, n) if, and only if, d|r and d|n. Continuing

=
n
∑

r=1

∑

d|r
d|n

µ (d) =
∑

d|n

µ (d)
n
∑

r=1
d|r

1.

on interchanging the summations. In this double summation we have that
d|n, so n = ℓd say, and we also have d|r, so r = kd say. Thus in the inner
sum we are counting the number of k ≥ 1 for which r ≤ n, i.e. kd ≤ ℓd, that
is, k ≤ ℓ. There are ℓ = n/d such values. Therefore this inner summation
equals n/d and thus

φ(n) =
∑

d|n

µ(d)
n

d
.

(Make sure you understand why this inner sum is exactly n/d).
�
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Corollary 3.39 1. φ is multiplicative.

2.

φ(n) = n
∏

p|n

(

1−
1

p

)

3.
∑

d|n

φ(d) = n.

Proof 1. Since µ and j are multiplicative we conclude that φ = µ ∗ j is
multiplicative.

2. Looking at φ on prime powers

φ(pa) =
∑

d|pa

µ(d)
pa

d
=
∑

0≤k≤a

µ
(

pk
)

pa−k

=
∑

0≤k≤1

µ
(

pk
)

pa−k since µ
(

pk
)

= 0 for all k ≥ 2,

= pa − pa−1.

This actually should have been obvious from the definition, the only natural
numbers ≤ pa, not coprime to pa are the multiples of p of which there are
pa−1 in number. So the number of natural numbers ≤ pa, coprime to pa is
the difference pa − pa−1.

Thus, since φ is multiplicative,

φ(n) =
∏

pa‖n

φ(pa) =
∏

pa‖n

(

pa − pa−1
)

= n
∏

p|n

(

1−
1

p

)

.

3. Start from φ = µ ∗ j and convolute both sides with 1,

1 ∗ φ = 1 ∗ (µ ∗ j)

= (1 ∗ µ) ∗ j since ∗ is associative

= δ ∗ j by Mobius inversion, 1 ∗ µ = δ

= j, since δ is the identity under ∗ .

Then, by the definition of convolution, 1 ∗ φ = j means

∑

d|n

φ(d) =
∑

d|n

φ(d) 1
(n

d

)

= j(n) = n.
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Finally, we saw an important arithmetic function earlier in the course,
namely von Mangoldt’s function Λ(n) defined to be log p when n is a power
of the prime p, zero otherwise. We have not studied it here because it is not
multiplicative.

The important result of Λ was

∑

d|n

Λ(d) = log n, (15)

which was introduced without motivation. But where did it come from?

If we write ℓ(n) = log n we can see that the result is the convolution
Λ ∗ 1 = ℓ. Then formally we can consider

DΛ∗1(s) = DΛ(s)D1(s) =
∞
∑

n=1

Λ(n)

ns
ζ(s) = −

ζ ′(s)

ζ(s)
ζ(s)

= −ζ ′(s) =
∞
∑

n=1

log n

ns

= Dℓ(s) .

This suggests Λ ∗ 1 = ℓ, i.e. (15). Möbius inversion applied to (15) gives
Λ = µ ∗ ℓ, i.e.

Λ(n) =
∑

d|n

µ(d) log
(n

d

)

.
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